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A review of theoretical treatments of 
shock-tube attenuation 

By D.  A. SPENCE A N D  B.  A.  WOODS 
Royal Aircraft Establishment, Farnborough, Hants. 

(Received 31 July 1963 and in revised form 15 November 1963) 

A critical review is given of theories dealing with viscous effects in shock tubes 
for cases in which the boundary layer is thin compared with the diameter. In 
particular an examination of the radial variation of flow quantities is used to 
show that the approach of Mirels (1957) is based on firmer ground than that of 
Trimpi & Cohen (1955). It is also shown that the small perturbation theories 
of these and other authors lead to an equation for running time identical in form 
to that derived by Roshko (1960) from an asymptotic analysis of boundary- 
layer leakage through the interface. 

1. Introduction 
The performance of a real shock tube differs considerably from that predicted 

by the idealized theory which assumes inviscid flow and instantaneous diaphragm 
opening, and ignores such possibilities as combustion at  the interface between 
driver and test gas, initial non-uniformity of the driver, and chemical kinetic 
effects. The effect of boundary-layer formation behind the shock has been studied 
by many authors, in two main ways : 

(i) By introducing small perturbations representing the displacement effect 
of the boundary layer on the flow in the inviscid core (Trimpi & Cohen 1955, 
Mirels 1957, Demyanov 1957, Spence & Woods 1960); these treatments are 
concerned primarily with the motion of the shock wave. 

(ii) By means of an asymptotic type of analysis aimed at  predicting the ulti- 
mate running time from considerations of boundary -layer leakage through the 
interface (Duff 1959, Hooker 1961, Roshko 1960, Anderson 1959, Ackroyd 
1963, Appleton & Musgrove 1963). 

The linearized theories of type (i) are necessarily incomplete, since no entirely 
satisfactory way has been found of allowing for the boundary layer in the 
expanded driver. (For recent reviews of the boundary-layer part of the problem, 
see Stewartson 1960 and Becker 1961.) Moreover, to the authors’ knowledge 
no mathematical discussion has been given of the mechanism by which the 
boundary layer influences the flow, previous arguments having been physical 
in character, leading to quite different formulations by Mirels and by Trimpi 
& Cohen. To clear up this point, an averaging procedure is applied to the axially 
symmetric flow in a circular tube, leading to one-dimensional equations of con- 
tinuity, momentum and energy for suitably defined mean quantities, applied 
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in $2.2. Inviscid flowin a quasi-cylindrical tube with small area changes, a closely 
related problem, had previously been considered by Chester (1954). The 
solution of the resulting equations, in linearized form, is then carried in $2.3 
to the point of writing all flow variables in terms of the shock velocity variation, 
assuming this is known, and of a boundary-layer term. 

These theories must, however, break down at large values of xld (x = distance 
from diaphragm, d = diameter), both because the application of boundary con- 
ditions at the unperturbed shock position is by then unrealistic, and because the 
boundary layer well behind the shock becomes too thick. In  $ 3 their relation to 
theories of type (ii) is explicitly displayed, and it is shown that if the shock velo- 
city finally comes to a constant value, the equation for running time derived by 
Roshko (1960) is again obtained. From this follows Roshko’s important conclu- 
sion that the running time approaches a constant value, confirming the experi- 
mental finding that beyond a certain stage increasing the length of a tube brings 
no advantage. 

Superimposed on the attenuation due to viscous action are the departures 
from ideal shock-tube behaviour due to the other causes mentioned earlier. These 
are referred to much more briefly in the remainder of the paper. 

2. Linearized attenuation theory 

2.1. Viscous eflects 

The way in which boundary layers form behind the shock and expansion waves 
is indicated in figure 1, which also shows an (x, t)-diagram of the unperturbed 
flow. The effect of the boundary layers would be to perturb the traces of the shock 
and interface, shown here as straight lines. The first comprehensive treatments 
of shock attenuation due to this process were given by Trimpi & Cohen (1955) 
and Mirels (1957). These are one-dimensional small-perturbation theories, using 
the acoustic approximation. The quantity assumed small is the ratio of boundary- 
layer thickness (more precisely of the maximum displacement thickness) to 
tube radius, and perturbations of pressure, velocity and shock speed are all 
proportional to this. Both methods lead to computations based on character- 
istic networks, from which the shock path and all other flow perturbations can 
be constructed. (In fact, as will be pointed out in $2.3, the computation could 
be much simplified by solving a certain functional equation for the shock speed.) 

In  these treatments the mechanisms whereby boundary layers influence the 
core flow are introduced by means of physical arguments, without examination 
of the governing equations. Trimpi & Cohen introduce a wall-friction term in 
the momentum equation, and an entropy production term arising from wall 
heat transfer and viscous dissipation in the energy equation. Mirels, on the other 
hand, introduces only a mass addition term in the continuity equation (which is 
omitted from the Trimpi & Cohen analysis). 

An integration across the tube of the governing equations for axially symmetric 
flow is given in the next paragraph. From this it is clear that appropriately- 
averaged quantities outside the boundary layer satisfy the one-dimensional 
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energy and momentum equations without viscous terms, but that a displace- 
ment term appears in the continuity equation: in other words, it  appears that 
Mirels’s formulation is correct, and that of Trimpi & Cohen quite wrong. (If 
the boundary layer completely filled the tube, however, the physical arguments 
used by Trimpi & Cohen would have more force, but this state of affairs is not 
consistent with the perturbation analyses under review.) 

The Mirels formulation was also used by Demyanov (1957), who obtain in 
closed form (in contrast to the elaborate construction method of Mirels) the 
solution for laminar boundary-layer growth between shock and interface. 
Demyanov’s main object was to demonstrate that attenuation of the shock and 

I boundary layer ____----- 

t 

FIGURE 1. Schematic diagrams of flow in a shock tube. 

acceleration of the interface are necessarily produced by this boundary layer. This 
work was extended by the present authors (1960) to cover turbulent boundary- 
layer growth, and to give expressions for pressure variation behind the shock. 
Predictions based on the theory, although of the right order, are not completely 
satisfactory; in particular the shock attenuation for a given nominal Mach num- 
ber is predicted to be less with a lighter driver, whereas Jones (1957) found the 
opposite trend in tests using hydrogen and helium. One obvious omission from 
the theory lay in ignoring the boundary layer behind the interface, some account 
of which was taken by Mirels and by Trimpi & Cohen (although as remarked the 
second of these approaches appears unsound). 

11-2 
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2.2 .  Unsteady axially-symmetric $ow in a constant-diameter tube 
With velocity components u, v in the axial (x) and radial ( r )  directions, the equa- 
tions of continuity, momentum and energy are 

g+-(pu)+- a i a  -(pvr) = 0, at ax r ar 

= dissipation + heat-conduction terms, (4) 

where 7 is the shear stress (viscous +turbulent) and S is the specific entropy 
equal to In (pip') + const. In  an ideal inviscid shock-tube flow we should have 
u , p , p  and S constant, and v = 0. We may therefore assume (in the regime to 
which small-perturbation theory is applicable) that outside the boundary layer 
u,p,p and S depart from constant values by amounts of order &/a, where S 
is the local boundary-layer thickness and a the radius of the tube, while v is of 
order &/a. Define a mean velocity 

ru ( x ,  r ,  t )  dr,  
0 

with similar definitions of mean pressure p and density p ,  and write 

u(x,  r ,  t )  = G(z, t )  + u'(x, r ,  t ) ,  

so that ru'(x,r,t)dr = 0. L7 

( 5 )  

Then u', p ' ,  p' and v, being produced by boundary-layer effects, are all of order 
&/a, as also are the departures of U, 'p, p from the values uo, po,  po say which would 
hold in inviscid flow. 

and integration from 0 to a - S 
gives 

Multiplication of equation (1)  by 2r/(a - 

where suffix 6 denotes values at  the edge of the boundary layer, namely 
r = a-8. 

Now 
r p d r - p  3 - (a -6 )p8  as 

( a  - at 
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The second term on the right of (9) is O ( S / U ) ~ ,  so by excluding terms of this order 
we can replace the first term on the left of (8) by ap/at. Likewise with use of ( 7 )  
the second term on the left of (8) becomes 

The p’u’ term makes a contribution of order (S/a)2,  which is again excluded, 
and by a similar argument to that leading to equation (9), the remaining term 
reduced to a(pU)/ax to the same order. Equation (8) can thus be rewritten 

ap a -~ %VS --+-(pa) = --, 
at ax a 

excluding terms of order (S/a)2. 
When the same procedure is applied to the axial momentum equation (2), 

the term vau/ar = vau’/ar is 0(S/a)2 so makes a negligible contribution, and 
from the remaining terms we obtain 

(the pressure derivative being approximated in the same way as the density 
derivative (9)). Examination of the double and triple products easily shows that 
to order S/u, this is just 

- aa -aa a j i  
p - + u p  + - z o o .  

(at  a,) ax  
Likewise from the energy equation (4), in which the right-hand side is zero 
outside the boundary layer, we obtain 

Equations (10)-(12) (of which the last two are derived in more detail in the 
Appendix) can now be looked on as continuity, momentum and energy equations 
for a one-dimensional flow with a mass addition, represented by the right-hand 
side of (lo),  which must be found from a separate boundary-layer calculation. 
These are precisely the equations that were treated by Demyanov, although 
it is now clear that his interpretation was inconsistent, being based on the 
assumption that flow variables outside the boundary layer were independent 
of radial position. 

The radial momentum equation (3) is now uncoupled from the system; its 
solution however would require knowledge of the shock curvature. Investiga- 
tions of this are referred to in $5 below. 

. 

2.3. Plow behind an  attenuating shock 

Consider now the flow behind a shock wave which, but for viscous effects behind 
it, would travel at  constant speed Uo into gas at  rest. Suppose the density, pres- 
sure and velocity behind the shock would then be po, p ,  and u, respectively and 
the speed of sound co = (ypo/po)+. The boundary-layer thickness behind the shock 
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will be a function of Uot - x  only (varying as (Uot -z)& or (Uot-x)% for purely 
laminar or purely turbulent flow, and containing as a parameter a Reynolds 
number based on conditions behind the shock). If  the perturbations due to 
boundary-layer action are small, we can write (10) and ( 1  l ) ,  with the aid of (12), 
in an acoustic approximation as 

If we set 

say, where K(5) is a function which may be supposed known, either from a 
boundary-layer calculation or, for example, from heat-transfer measurements, 
the solution of (13) and (14) can be written 

If suffix s denotes conditions immediately behind the shock, whose instan- 
taneous speed is U, say, then for small perturbations in shock motion we can 
write 

(18 

Ps-Po = ~ ~ ~ o ~ o ~ ~ o - ~ o ~ ~ u , - ~ o ~ / ~ o ~  (19). 

- 
us-uo = hu,(Us- UO)/UO, 

where the derivatives A, p, which are easily computed from the Rankine-Hugo- 
niot relations, have been defined in such a way that both tend to unity for a 
strong shock. If therefore we write the perturbation in shock speed at time t as 

u, - uo = UoP(t) (20) 

and apply the boundary conditions (18) and (19) at the unperturbed shock posi- 
tion x = Uot, where t = = t ,  then since K(0)  = 0 these become 

f ( t )  + g(t)  = W t ) ,  f ( t )  - g(t) = %M,F(t) 

and f ( t )  = (*A +PJ!fO) F(% g( t )  = (+A -PMo) F@).  (21) 

Substitutions of these expressions in (16) and (17)  therefore gives the variation 
of pressure and velocity behind the shock in terms of the shock speed and 
boundary-layer growth. 

To go further and calculate the shock perturbation F( t ) ,  it  would be necessary 
in general to perform a further boundary-layer calculation for flow behind the 
interface. This would be very complicated and uncertain, although it has been 



Theoretical treatments of shock-tube attenuation 167 

attempted by Mirels. The calculation would lead to expressions for pressure and 
velocity perturbations in the expanded driver in the same functional form as 
(16) and ( 17), in the region between the interface and the leading characteristic 
of the expansion. By applying the condition that the expansion must begin 
from rest, it  would then be possible to express one of the unknown functions 
corresponding to f and g in terms of the other. Thus free-stream conditions 
behind the interface would be expressed in terms of a single unknown function q5 
say, together with a boundary-layer function, J say, corresponding to K(t[). 
Then by equating both pressure and velocity perturbations just behind the inter- 
face to those just in front, we should have two relations between the unknown 
functions q5 and F ,  reducible by elimination of q5 to  a single functional equation 
expression F ( t )  in terms of the known boundary-layer functions R and J .  This 
is the basis of the analysis given by Spence & Woods (1960) for treating the case 
of combustion behind the interface. 

If, however, we are prepared following Demyanov to omit the influence of 
the boundary layer behind the interface, the downstream boundary condition 
that the flow perturbations should be compatible with isentropic expansion of 
the driver from rest takes the much simpler form 

(3, -Po)/(% - uo) = - ( C P ) Q ,  ( 2 2 )  

where suffix c denotes conditions just in front of the interface, c is the sound speed, 
and suffix 3 refers to the expanded driver. The boundary conditions at  this point 
are applied on the line x = uot ,  where < = t / ( l  -Mo),  7 = t/( l  +No), 5 = t .  
When these values are inserted in (16) and (17), (22) becomes, with the use of (21), 

AF(&)+BF(&)+CR( t )  = 0, 

where B C = (3;) (1  + : 2 M o ) .  

(23) is a functional equation giving the shock perturbation function F( t )  in 
terms of the boundary-layer growth function K(t) .  The solution can be written 
down as 

This solution is equivalent to the construction method of Mirels. If the boundary 
layer is purely laminar or purely turbulent K is of the form Kl tm with m = 4 or $ 
in the two cases. (24) then reduces to 

(25) 

This is the ‘self-similar’ solution derived ab initio by Mirels & Braun (1962). 
In  the more general case referred to when the boundary layer behind the inter- 
face is taken properly into account, the functional equation satisfied by F ( t )  
could be put in the form 

F ( t )  + A F ( a t )  + BIP(Pt) = L( t )  (26) 
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say, where 1 > a > /I, A and B being different from the constants in ( 2 3 ) ,  and 
L(t) being a known boundary-layer disturbing function. The solution for this 
equation can also be written down; it is 

as was first noted by Gunderson (1958) in a discussion of one-dimensional flows 
with weak entropy addition. 

3. Running time 
The linear theory just described predicts deceleration of the shock and accelera- 

tion of the interface, so that the theoretical running time grows to a maximum 
and then decreases to zero, in contrast to the most commonly observed state of 
affairs in which the running time reaches a maximum then stays more or less 
constant, while, once this stage has been reached, the shock speed decreases 
more slowly. 

Linearized theory must clearly have become invalid well before it predicts 
the shock being overtaken by the interface, if only because the lines on which 
the boundary conditions are applied are by then far from the true positions 
of shock and interface. The failure of the Demyanov-type theories may also be 
due in part to neglect of the boundary layer behind the interface. 

To get at the running time directly a number of writers, following up a 
qualitative explanation due to Duff (1959), have used an asymptotic approach 
based on the fact that the mass of fluid between the shock and the ‘interface ’ 
(i.e. the contact surface in the inviscid core) increases at  a rate equal to the 
difference between that at which the shock passes through new fluid, and that 
at  which boundary-layer leakage through the interface takes place. Assuming 
both shock speed, and density between shock and interface, constant, calcula- 
tion of these rates then gives the running time at each station. The most com- 
plete discussions along these lines are those of Roshko (1960) and Hooker 
(1961). We show here how the equation studied by Roshko can be derived from 
the analysis of the last section. 

The distance 1 say between shock and interface at a given time grows accord- 
ing to the equation 

where L i ,  u, are speeds of shock and interface respectively. Roshko’s assumption 
is effectively 

dljdt = v,(t) -u,(t), (2s)  

F( t )  = const. = F, (29) 

say, where F ( t )  is the shock perturbation function defined by (20). Consistently 
with this we must also take f[t/( 1 ~fr &lo)], which give the perturbations at  the 
interface, as.being (+A +pM,)  F(oo), and substitutionof (16) and (20) in (28) then 
gives 

say, where 
d&lt = W,-W,K({,) (30) 

w, = U,( 1 + F,) - uo( 1 + AFm),  w, = 2N,u,/( 1 - H;), 
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and Q denotes the value of 5 at the interface. As noted above, the shock and 
interface positions are by now well removed from the lines x = U,t, x = uot, so 
it no longer gives a good approximation to take Q = t as in the previous section; 
instead we must take cc = I / (  U, - u,), when (30) takes the form 

dl/dt  = w, - W,( u, - U)-mlm, (31) 

with m = 8 or for laminar (the case treated by Roshko) or turbulent boundary 
layers. The initial condition is Z = 0 when t = 0. The solution of this equation is 
straightforward and shows Zft) + a constant as t -+ 00. Since the variation of 
density between shock and contact surface has been implicitly taken into 
account in the present derivation but not in Roshko’s, there may be slight 
numerical differences between the two. 

4. The finite opening time of the diaphragm 
White (1958) has pointed out that anomalously fast shocks sometimes observed 

at very high diaphragm pressure ratios could be caused by delay in their forma- 
tion due to the finite opening time of the diaphragm. The only observable 
predicted by his theory is a transient maximum shock speed, greater than that 
given by ideal shock-tube theory. Agreement between his theoretical and 
experimental results is remarkably good, but he states that this is probably 
partially fortuitous. Kireyev ( 1962) has made more detailed calculations 
based on a plausible model of diaphragm opening, in which the trajectory of the 
accelerating shock and the non-uniform flow behind it are computed. His results 
agree well with those of White. 

Kireyev finds that in a high-pressure shock tube, the inertia of the diaphragm 
petals dominates elastic/plastic bending forces in resisting opening, and this 
fact enables a scaling law for diaphragm opening to be deduced, namely that for 
geometrically similar diaphragms rupturing in the same manner, opening times 
willbe proportional to (pDd/p)*,  wherep,is themass per unit areaofthediaphragm, 
p the pressure difference across it, and d a characteristic dimension of the tube 
cross-section. 

In  relating this to the subsequent flow, the properties of the test and driver 
gas have to be brought in, in a rather complicated manner, and no universal scal- 
ing law predicting, say, shock-formation distance in terms of all the relevant 
parameters seems possible. Nevertheless, there appear to be two general trends, 
indicated respectively in figures 2 and 3 (which are derived from figures 8 and 9 
of White’s paper) : (1) Shock-formation distance increases steadily with Mach 
number. (ii) For shocks at a given Mach number driven by different driver gases, 
the formation distance is shorter when the speed of sound in the driver is higher. 
(In fact the test gases in the curves of figure 3 are also different, but this effect 
seems less important.) 

Gaydon (1963) quotes a shock-formation distance of about seven diameters. 
This strictly speaking is the distance for the compression waves following dia- 
phragm rupture to coalesce into a plane shock front, but as can be seen from 
figure 2 the influence of the formation process on the motion of the shock persists 
for some considerably greater length. 
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Distance from diaphragm (diameters) 

ratios (from White 1958, figure 8). 
FIGURE 2.  Shock acceleration due to finite diaphragm opening time for several pressure 

4 8 12 16 20 
Shock Mach number 

(from White 1958, figure 9). 
FIGURE 3. Shock formation distance vs Mach number with different drivers 

White also gave a rough qualitative account of how mixing in the contact 
region, which would certainly accompany real diaphragm opening, would affect 
the flow. The method used by Spence & Woods (1960) to treat combustion could 
be applied equally to mixing, but in the absence of an adequate description of the 
mixing process it too would yield only qualitative results. 
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5. Other factors 
5.1. Initial non-uniformity of driver and test gas 

Non-uniform conditions in the driver at the instant of diaphragm rupture may 
affect the flow in a combustion-driven shock tube. Some possible models of this 
have been computed by Bird (1957). A related effect has been found in work at  
Cornell Aeronautical Laboratory in a tube driven by gas heated by electrical 
resistance elements. Here the whole high-pressure section becomes hot, and 
heat conduction down the tube causes a lengthwise temperature gradient in the 
test gas, leading to variation in the shock speed and non-uniformity in the flow. 

5.2, Combustion in the contact region 
Spence & Woods (1960) treated this using an idealized model of combustion, 
and explained qualitatively some observed features of flows in hydrogenlair 
shock tubes. 

5.3. Chemical relaxation effects 
The one-dimensional flow of a reacting gas behind a shock has been treated 
by many writers, and measurements of its non-uniformity used to deduce the 
rates of the reactions involved. Spence (1961) has treated the piston problem, 
and shown that relaxation leads to attenuation; the shock initially travels a t  
a speed appropriate to frozen conditions, but slows down to that appropriate 
to equilibrium as time increases. It is quite simple by combining this analysis 
with that of Spence & Woods to show that the same behaviour is to be expected 
following diaphragm burst in an inviscid shock-tube flow. 

5.4. Shock curvature 
Boundary-layer growth in the shock tube causes the shock wave to become 
curved. This effect is mentioned in a report on low-density shock tube work 
by Lin & Fyfe (1961) who point out its relevance to measurements made across 
the full diameter of the tube. It has also been studied experimentally by Duff 
& Young (1961) and theoretically by Hartunian (1961), Sichel(1962), and de Boer 
(1963). Hartunian’s analysis is invalid near the wall, where a shock thickness 
is of the same order of magnitude as viscous layer thickness, and the boundary- 
layer approximation is inapplicable. Sichel’s treatment is consistent in this 
region but limited to weak shocks. Neither can be compared with experiment, 
since both apply only to plane flows. In  de Boer’s study Hartunian’s theory is 
extended to rectangular and circular tubes. 

6. Non-uniformity behind the reflected shock 
In  a study of the interaction ofthereflectedshockwith the shock-tube boundary 

layer, Mark (1958) observed that separation greatly disturbed the flow behind 
the shock. However, separation is not necessary for non-uniformity to occur. 
Rudinger (1961) has shown that the non-uniformities behind the attenuating 
incident shock are transmitted through the reflected shock, causing the flow 
behind it to be unsteady. The same problem has been treated theoretically and 
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experimentally by Kamimoto, Akamatsu & Hasegawa (1  962), and theoretically 
by Woods (1962)) who also discusses the relation between his work and that of 
Rudinger. 

Strehlow & Case (1961) have however reported measurements of density varia- 
tion behind the reflected shock which do not agree with calculations made 
by Rudinger's method. 

7. Conclusions 
A n  examination of the radial variations of flow quantities in a constant- 

diameter shock tube in which the boundary layer is thin compared with the 
diameter has shown that Mirels's formulation of the linearized equations for an 
attentuation theory, in which a small perturbing term (due to boundary-layer 
growth) appears in the continuity equation, is the correct one for this case. 

The effects of viscosity and of finite diaphragm-opening time will always be 
present, and if one tries to reduce viscous attenuation by reducing the length- 
to-diameter ratio of the tube, the analysis of Kireyev shows that the relative 
effect of finite diaphragm opening time will be greater. 

Since the effects of these factors cannot be computed in advance, it seems 
necessary to monitor the shock trajectory and at  least one other flow variable- 
e.g. heat transfer or pressure variation-in order to build up a fairly complete 
picture of flow conditions in a tube. An example of how this can be done occurs 
in the recent work by Holbeche & Spence (1964), in which directly-measured 
temperatures behind an attenuating shock wave have been related to measure- 
ments of shock speed and pressure. 

We are grateful to Dr D. R. White for permission to base figures 3 and 3 on 
curves in his paper (Zoc. cit.). 

Appendix 

Derivation of equations (1 1) and (12), for quantities averaged across 
the inviscid core 

The one-dimensional equations of motion (11) and (13) are derived from the 
corresponding complete equation (2) and (4) in the same way as (1  0) was obtained 
from (l), in the main text. 

When U + u ' ,  y+p' ,  P+p' are substituted for u, p and p in (2) (according to 
the definition of (6) and ( 7 ) ) ,  multiplication of that equation by %/(a  - ~ 3 ) ~  and 
integration with respect to r from 0 to  a - S give 

- ( @ + p ' )  rd r  = ~- . (33) 
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From the definition of the barred and primed quantities, in expressions such as 

and 

the first term on the right-hand side vanishes, and the second is of order (S/a)2; 
terms containing products of two (or more} primed quantities are also of order 
( 6 / ( ~ ) ~ ;  and, by definition, ~ i ~ = ~ - ~  is vanishingly small. Equation (32) then reduces 
to - a;li -au aF 

p -+u- + - - 0 ,  
(a t  ax) ax  

which is equation (1  1). 
Equation (4) written out fully is 

[ (2)‘ : r ( A  E))* as as ax 
at ax ar 
-+u-+v- = (pT)-l  p - +- - - r -  (33) 

The right-hand side which represents the production of entropy due to viscous 
dissipation and heat conduction, may (if it  is further assumed that the Prandtl 
number is nearly l), be ignored outside the boundary layer. Put 

X = B(x, t )  + S’(x, r ,  t ) ,  (34) 

where X’rdr = o 
Jo 

and S’ is of order (6/a). Then when the left-hand side of (33) is multiplied by 
%/(a - and integrated from 0 t o  ( a  - a), there results 

a -  
ax  (u + u’) - (S+ S’) rdr  X’) rdr + ____ 

( a - V  s“-s 0 

- __-- v-rdr 

= O{(i?/a)2}. 
( a - 8 ) ~  Ia-’ ar 

I 

It can be shown, as above, that 

and 
equation (33) reduces to 

aS/at + u a Q a X  = 0. 

It remains to identify B with In ( I ) / j j y ) .  Quite generally, 
X/cv = lnp-ylnp+const., 

or (B+ X’)/ct, = In ( p  -p‘) - y In (p +p’) + const. 
= Inp-ylnp+p’/p- yp’/p+const. +O{(s/a)2}. 

(35) 
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Multiply both sides by %-/(a - S)2 and integrate with respect to r from 0 to a - 6;  

S/cv = InF-yhp+const.,  there results 

so that (35) is equivalent to 

which is equation (12). 
2 In ( ~ / ~ ~ ) / 2 ~  + U 2 In ( p / p ) / 2 x  = 0, 
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